Concrete / Pictorial / Abstract Maths Calculation Policy

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with
furthermaterial added. It is a working document and will be revised and amended as necessary. Many variations have been included to provide teachers with a range of tools to support pupils in their grasp of number and calculation. To ensure consistency for pupils, it is important that that the mathematical language used in maths lessons reflects the vocabulary used throughout this policy.

Recommended practice delivering a mastery approach

True mastery aims to develop all children's mathematical understanding at the same pace. As much as possible, children should be accessing the samelearning. Differentiation should primarily be through support, scaffolding and deepening, not through task.

Consistency in language is essential for pupils to understand the concepts presented in mathematics. If other, 'child-friendly' terminology is used, this must be alongside the current terminology recommended by maths specialists. Using this will support children with their examinations and throughout secondaryschool.

Evidence repeatedly shows that mixed ability seating increases less confident pupils' perception of mathematical capability, which impacts positively upon outcomes. While not a school policy, it is recommended to avoid ability groups. This presents a challenge in ensuring the more confident mathematicians arebeing extended. An extension tasks to deepen understanding is the most simplistic way around this.

Concrete, pictorial, abstract (CPA) concepts should not be confused as differentiation for lower, middle, higher attaining children. CPA is an approach to beused with the whole class and teachers should promote each area as equally valid. Manipulatives in particular must not be presented as a resource to support the less confident or lower attaining pupils.

Used well, manipulatives can enable pupils to inquire themselves- becoming independent learners and thinkers. They can also provide a common language with which to communicate cognitive models for abstract ideas. Drury, H. (2015)

Children aged seven to ten years old work in primarily concrete ways and that the abstract notions of mathematics may only be accessible to them through embodiment in practical resources. Jean Piaget's (1951)

Real things and structured images enables children to understand the abstract. The concrete and the images are a means for children to understand the symbolic so it's important to move between all modes to allow children to make connections. Morgan, D. (2016)

The abstract should run alongside the concrete and pictorial stage as this enables pupils to better understand mathematical statements and concepts.

YEAR 1 ADDITION

OBJECTIVE / STRATEGY	CONCRETE	PICTORIAL	ABSTRACT
Combining two parts to make a whole: part-whole model	Use part, part whole model. Use cubes to add two numbers together as a group or in a bar.	Use pictures to add two numbers together as a group or in a bar.	$\begin{aligned} & 8=5+3 \\ & 5+3=8 \end{aligned}$ Use the part-part-whole diagram as shown above to move into the abstract. Include missing number questions to support varied fluency: $\begin{aligned} & 8=?+3 \\ & 5+?=8 \end{aligned}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10 This is an essential skill for column addition later	-eececece crym $6+5=11$ Start with the bigger number and use the smaller number to make 10. Use 10 frames	Use pictures or a number line. Regroup or partition the smaller number using the part, part whole model to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10 ? How many more do I add on now?

Represent number bonds and related subtraction facts within 20

2 more than 5

Include missing number questions:
$8=?+3$
$5+$? $=8$

Emphasis should be on the language:
' 1 more than 5 is equal to 6.'
' 2 more than 5 is 7.'
' 8 is 3 more than 5.'

YEAR 2 ADD			
OBJECTIVE / STRATEGY	CONCRETE	PICTORIAL	ABSTRACT
Adding multiples of 10	$50=30=20$ Model using dienes and bead strings	3 tenc +5 tons - \qquad bens $30+50=$ \qquad Use representations for Base 10	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$
Use known number facts: part-whole model	Children explore ways of making numbers within 20		Explore commutativity of addition by swapping the addends to build a fact family. Explore the concept of the inverse relationship of addition and subtractions and use this to check calculations. \square $+1=16$ $16-1=$ \square $1+$ \square $=16$ 16 - \square $\square=1$
Using known facts	$\begin{aligned} & \square_{\square} \square+\square_{\square}=\square_{\square \square \square_{\square}} \\ & \square \square \square+\square \square \square \square \square \square \square \square \square \end{aligned}$	Chn draw representations of HTO	$3+4=7$ leads to $30+40=70$ leads to $300+400=700$
Bar model	$3+4=7$	$7+3=10$	23 25 $?$ $23+25=48$

Add a 2-digit number and tens

YEAR 3 ADDITION

OBJECTIVE / STRATEGY	CONCRETE	PICTORIAL	ABSTRACT
Column addition (no regrouping with friendly numbers). Add two or three 2-digit or 3-digit numbers.		Children move to drawing the counters using a tens and one frame: tens ones	$\begin{array}{r} 223 \\ +114 \end{array}$
	Dienes or numicon. Add together the ones first, then the tens: Move to using place value counters		337 Add the ones first, then the tens, then the hundreds.
Column addition (with regrouping)	Exchange ten ones for a ten. Model using numicon and place value counters. $46+27=73$	 34 $+17$ Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line	$\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$ Start by partitioning the numbers before formal column to show the exchange. $\begin{array}{r} 536 \\ +85 \\ \hline \frac{621}{11} \end{array}$

Estimate the answers to questions and use inverse operations to check answers

Estimating $98+17=$?
$100+20=120$

Use number lines to illustrate estimation.

Building up known facts and using them to illustrate the inverse and to check answers:
$98+18=116$
$18+98=116$
$116-98=18$

YEARS 4-6 ADDITION

OBJECTIVE / STRATEGY	CONCRETE	PICTORIAL	ABSTRACT
Y4-add numbers with up to 4 digits	 Children continue to use dienes or place value counters to add, exchanging ten ones for a ten and ten tens for a hundred and ten hundreds for a thousand.	\bullet \ddots \bullet \because $\because \bullet$ \because \bullet \because \ddots \ddots 7 1 5 1 \bullet \because Draw representations using place value grid.	Continue from previous work to carry hundreds as well as tens. Relate to money and measures.
Y5-add numbers with more than 4 digits. Add decimals with 2 decimal places, including money.	As Year 4 Introduce decimal place value counters and model exchange for addition.	$2.37+81.79$ tens ones tents hundredts 00 000 00009 00000 0 $0<$ 00 000 0000 00060 6	$\begin{array}{r} 72.8 \\ +54.6 \\ \hline 127.4 \\ \hline 1.1 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \hline \end{array}$
Y6-add several numbers of increasing complexity, including adding money, measure and decimals with different numbers of decimal points.	As Year 5	As Year 5	Insert zeros for place holders. $\begin{array}{r} 81,059 \\ 3,668 \\ 15,301 \\ +20,551 \\ 120,579 \\ 1,11 \end{array}+\begin{array}{r} 23 \cdot 361 \\ 59 \cdot 770 \\ 93 \cdot 511 \\ 21 \end{array}$

OBJECTIVE / STRATEGY

Represent and use number bonds and related subtraction facts within 20 Include subtracting zero Part part whole model	Link to addition. Use PPW model to modelthe inverse. If 10 is the whole and 6 is one of the arts, what s the other part? $10-6=4$	Use pictorial representations to show the part	Move to using numbers within the part whole model: Include missing number problems: $\begin{aligned} & 12-?=5 \\ & 7=12-? \end{aligned}$
Make 10	Make 14 on the ten frame. Take 4 away to make ten, then take one more away so that you have taken 5 .	Jump back 3 first, then another 4. Use ten as the stopping point.	$16-8$ How many do we take off first to get to 10 ? How many left to take off?
Bar model Including the inverse operations.			8 2$\begin{aligned} & 10=8+2 \\ & 10=2+8 \\ & 10-2=8 \\ & 10-8=2 \end{aligned}$

YEAR 2 SUBTRACTION			
OBJECTIVE / STRATEGY	CONCRETE	PICTORIAL	ABSTRACT
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	$20-4=$	$20-4=16$
Partitioning to subtract (no regrouping using friendly numbers)	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping	Children draw representations of Dienes and cross off. b $43-21=22$	$43-21=22$
Make ten strategy Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	Use a bead bar or bead strings to model counting to next ten and the rest.	Use a number line to count on to next ten and then the rest.	$93-76=17$

MEAR 3 SUB RACUION			
OBJECTIVE / STRATEGY	CONCRETE	PICTORIAL	ABSTRACT
Subtract numbers mentally, including: 3-digit number + ones 3-digit number + tens 3-digit number + hundreds	espespese		Vary the position of the answer and question. Expose children to missing number questions and vary the missing part of the calculation: $\begin{aligned} & 678=?-1 \\ & 688-10=? \\ & 678=?-100 \end{aligned}$
Column subtraction without regrouping (friendly numbers)	$47-32$ Use base 10 or numicon to model	Draw representations to support understanding	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into ten ones. Use the phrase 'take and make' for exchange.	Children may draw base ten or PV counters and cross off.	

YEARS 4-6 SUBTRACTION

OBJECTIVE / STRATEGY	CONCRETE	PICTORIAL	ABSTRACT
Subtracting tens and ones Y4 - subtract with up to 4 digits (introduce decimal subtraction through context of money)	234-179\odot \odot 0 $\odot \odot$ $0 \odot \odot$ 0000 \odot $0 \odot$ 000 $0 \odot \bigcirc \odot$ 000 0 000 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw PV counters and show their exchange - see Y 3	$\begin{array}{r} 2^{6} 54 \\ -\quad 1562 \\ \hline 1192 \end{array}$ Use the phrase 'take and make' for exchange
Y5 - subtract with at least 4 digits, including money and measures Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal, up to 3 decimal places	As Year 4	Children to draw PV counters and show their exchange - see Y 3	$\begin{array}{r} { }^{2} 8^{\prime \prime} x^{\prime} 0 \not 8^{\prime} 6 \\ -\quad 2128 \\ \hline 28,928 \end{array}$
Y6 - subtract with increasingly large and more complex numbers and decimal values, up to 3 decimals places	As Year 4	Children to draw PV counters and show their exchange - see Y3	

YEAR 1 MULTIPLICATION

Programme of Study specifies the following objectives but it does not require the explicit teaching of the mathematical symbol of multiplication

\begin{tabular}{|c|c|c|c|}
\hline OBJECTIVE / STRATEGY \& CONCRETE \& PICTORIAL \& ABSTRACT

\hline Doubling \& Practical activities using manipultives including cubes and Numicon to demonstrate doubling \& \begin{tabular}{l}
Draw pictures to show how to double numbers

Double 4 is 8
\square
\square
\square

\square
\square
\square
\square
\end{tabular} \& Partition a number and then double each part before recombining it back together

\hline Counting in multiples (2 s , 5s, 10s) \& Count the groups as children are skip counting, children may use their fingers as they are skip counting. \& Children make representations to show counting in multiples \& Count in multiples of a number aloud. Write sequences with multiples of numbers.

$$
2,4,6,8,10
$$

$$
5,10,15,20,25,30
$$

$$
10,20,30,40,50
$$

\hline Making equal groups and counting the total \& Use manipulatives to create equal groups. \& | Draw to show $2 \times 3=6$ |
| :--- |
| Draw and make representations | \& $2 \times 4=8$

\hline
\end{tabular}

Repeated addition Understanding arrays

YEAR 2 MULTIPLICATION

Children should be able to recall and use multiplication and division facts for the 2,5 and 10 times tables

OBJECTIVE / STRATEGY	CONCRETE	PICTORIAL	ABSTRACT
Doubling	Model doubling using dienes and place value counters. $40+12=52$	Draw pictures and representations to show how to double numbers	Partition a number and then double eachpart before recombining it back together.
Counting in multiples of $2,3,4$, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fingers as they are skip counting. Use bar models. $5+5+5+5+5+5+5+5=40$	Number lines, counting sticks and bar models should be used to show representation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square

| Multiplication is commutative | Create arrays usingcounters and cubes
 and NumiconUse representations of arrays to show
 differentcalculations and explore
 commutativity. 12 $=3 \times 412=4 \times 3$ |
| :--- | :--- | :--- |
| Use an array to write | |
| multiplication sentences and | |
| reinforce repeated addition | |

YEAR 3 MULTIPLICATION

Children should be able to recall and use multiplication facts for the 3,4, and 8 times tables

OBJECTIVE / STRATEGY
Grid method progressing to the formal method

Multiply 2-digit numbers by 1-digit numbers

CONCRETE

Show the links with arrays to first introduce the grid method.

Move onto base ten to move towards a more compact method:

4 rows of 13

Move onto place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows:

4×126

Fill each row with 126. Add up each column, starting with the ones making any exchanges needed

PICTORIAL

Children can represent their work with place value counters in a way that they understand.

They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.

Move forward to the formal written method:

Solve problems, including missing
Three times as high, eight times as long number problems, integer scaling problems

YEARS 4-6 MULTIPLICATION

OBJECTIVE / STRATEGY
Grid method recap for multiplying 2 digit numbers by 1-digit numbers, moving onto 3-digit by 1-digit (Y4 expectation)

Column multiplication

CONCRETE

Use place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows:

Cocelations
4×126

Fill each row with 126. Add up each column, starting with the ones making any exchanges needed

Children can continue to be supported by place value counters at this stage of multiplication. This initially involves no regrouping

It is important at this stage that they always multiply the ones first. The corresponding long multiplication is modelled alongside.

PICTORIAL

Children can represent their work with place value counters in a way that they understand.

They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.

The grid method may be used to show how this relates to a formal written method.

Bar modelling and number lines can support learners when solving multiplication problems

ABSTRACT
Start with multiplying by 1-digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$210+35=245$

327
$\times \quad 4$
28
80
1200
1308

This may lead to a compact method.

YEAR 1 DIVISION

OBJECTIVE / STRATEGY

YEAR 2 DIVISION

OBJECTIVE / STRATEGY

YEAR 3 DIVISION

(Greater Depth Year 2)

OBJECTIVE / STRATEGY
Division with remainders

CONCRETE
$14 \div 3=$

Divide objects between groups and see how much is left over

PICTORIAL

Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder.

Draw dots and group them to divide an amount and clearly show a remainder.

Use bar models to show division with remainders.

37			
10	10	10	7

$\underbrace{\substack{6+6+6+6+6+6+2}}_{06121824303638}=$

ABSTRACT

Complete written divisions and show the remainder using r

29	$\div \underset{\uparrow}{8}=\underset{~}{3}$ REMAINDER 5
\uparrow	

dividend divisor quotient

YEARS 4-6 DIVISION

OBJECTIVE / STRATEGY

Short Division - divide at least 3-digit numbers by 1 digit.

CONCRETE

Use place value counters to divide using the bus stop method alongside
$42 \div 3=$

Start with the biggest place value column, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over.

We exchange this ten for ten ones and then share the ones equally among the groups.

We look at the counters in one of the groups - the answer is 14.

PICTORIAL

Students can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups.

Encourage them to move towards counting in multiples to divide more efficiently.

ABSTRACT

Begin with divisions that divide equally with no remainder.

Move onto divisions with a remainder.

Finally move into decimal places to divide the total accurately.

Long Division (Chunking Method) for dividing at least 3-digits by 2-digit numbers

Make connection with repeated subtraction. Use place value counters to support. Recognise that repeatedly taking away such a small amount from a large number is not efficient and use this as an introduction to the concept of chunking.

Make connections with repeated subtraction. Show concept on number line.

Laid out like repeated subtraction. Start with calculations that don't have a remainder, e.g.:

155 $\frac{-50}{105}$	(10×5)
$\frac{-50}{55}$	(10×5)
$\frac{-50}{5}$	(10×5)
31 groups of 5 have been subtracted	
$\frac{5}{0}$	(1×5)

Therefore $155 \div 5=31$

Then move on to calculations with remainders:
$73 \div 5$ How many 5 s make 73 ?
73

$-\frac{50}{23}$	$(\underline{10} \times 5)$
$\frac{-20}{3}$	$(\underline{4} \times 5)$

How many 59 have beon subtracted? 14 sets of 5 , with 3 left over.

$$
73 \div 5=14 r 3
$$

